منابع مشابه
Quadrature rules for rational functions
It is shown how recent ideas on rational Gauss-type quadrature rules can be extended to Gauss-Kronrod, Gauss-Turr an, and Cauchy principal value quadrature rules. Numerical examples illustrate the advantages in accuracy thus achievable. 0. Introduction The idea of constructing quadrature rules that are exact for rational functions with prescribed poles, rather than for polynomials, has received...
متن کاملWeighted quadrature rules with binomial nodes
In this paper, a new class of a weighted quadrature rule is represented as -------------------------------------------- where is a weight function, are interpolation nodes, are the corresponding weight coefficients and denotes the error term. The general form of interpolation nodes are considered as that and we obtain the explicit expressions of the coefficients using the q-...
متن کاملAnti-Szego quadrature rules
Szegő quadrature rules are discretization methods for approximating integrals of the form ∫ π −π f(e it)dμ(t). This paper presents a new class of discretization methods, which we refer to as anti-Szegő quadrature rules. AntiSzegő rules can be used to estimate the error in Szegő quadrature rules: under suitable conditions, pairs of associated Szegő and anti-Szegő quadrature rules provide upper a...
متن کاملApplication of CAS wavelet to construct quadrature rules for numerical integration
In this paper, based on CAS wavelets we present quadrature rules for numerical solution of double and triple integrals with variable limits of integration. To construct new method, first, we approximate the unknown function by CAS wavelets. Then by using suitable collocation points, we obtain the CAS wavelet coefficients that these coefficients are applied in approximating the unk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2003
ISSN: 1617-7061,1617-7061
DOI: 10.1002/pamm.200310224